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Objectives. Non-dystrophic myotonias (NDM) are rare diseases due to mutations in the volt-
age-gated sodium (Nav1.4) and chloride (ClC-1) channels expressed in skeletal muscle fibers. 
We provide an up-to-date review of pharmacological treatments available for NDM patients and 
experimental studies aimed at identifying alternative treatments and at better understanding the 
mechanisms of actions.
Methods. Literature research was performed using PubMed and ClinicalTrial.gov. 
Results. Today, the sodium channel blocker mexiletine is the drug of choice for treatment of NDM. 
Alternative drugs include other sodium channel blockers and the carbonic anhydrase inhibitor 
acetazolamide. Preclinical studies suggest that activators of ClC-1 channels or voltage-gated 
potassium channels may have antimyotonic potential. 
Conclusions. An increasing number of antimyotonic drugs would help to design a precision ther-
apy to address personalized treatment of myotonic individuals.

Key words: non-dystrophic myotonia, pharmacological treatment, sodium channel, chloride channel, 
drug repurposing

Introduction

Non-dystrophic myotonias are rare neurological diseases due to mutations in SCN4A and 
CLCN1 genes encoding the voltage-gated sodium (Nav1.4) and chloride (ClC-1) chan-
nels in skeletal muscle fibers 1. The Nav1.4 sodium channel is critical for action potential 
generation and firing. Missense mutations in SCN4A induce a gain of function of Nav1.4 
channels, determining sarcolemma hyper-excitability. The ClC-1 chloride channel is open 
at rest potentials, thereby stabilizing the sarcolemma voltage and dampening excitability. 
Missense mutations or nucleotide deletions/insertions in CLCN1 reduce ClC-1 activity and 
favor muscle excitability. The hyper-excitability of sarcolemma slows down muscle relax-
ation after contraction resulting in muscle stiffness typical of myotonia.
Sodium channel-related myotonic syndromes are all transmitted in an autosomal domi-
nant manner and are subdivided into Paramyotonia Congenita (PMC) and Sodium Channel 
Myotonia (SCM). PMC is characterized by paradoxical myotonia (worsening with exercise), 
marked cold sensitivity, and possible episodes of flaccid paralysis 2. SCM forms a more 
heterogeneous group characterized by lack of paradoxical myotonia and paralytic attacks; 
they can display features like warm-up (improvement with exercise) and marked sensi-
tivity to high blood K+. Some mutations associated with neonatal onset can be very se-
vere and life-threatening due to respiratory difficulties. Chloride channel-related myotonic 
syndromes are subdivided into the dominantly inherited Thomsen’s Myotonia Congenita 
(TMC) and the recessive Becker’s Myotonia Congenita (BMC), which is often more severe. 
Warm-up is often observed in BMC, as well as transient weakness occurring at movement 
initiation.
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While some myotonic patients can manage myotonia by adapting 
lifestyle and exercise, others require pharmacological treatment to 
improve quality of life 3. Empirically, sodium channel blockers indicat-
ed for epilepsy or cardiac arrhythmias have long been used off-label 
for symptomatic treatment of myotonia. By inhibiting sodium chan-
nels in a use-dependent manner, these drugs reduce the abnormal 
action potential firing in the myotonic muscle without altering normal 
function in healthy skeletal myofibers, cardiomyocytes, and neurons.

Mexiletine, the first choice drug in 
non-dystrophic myotonias 

Since the 1980’s, the antiarrhythmic drug mexiletine became the 
drug of choice in myotonic syndromes (Fig.  1) 4. A milestone was 
achieved in 2012 with the results of an international, randomized 
controlled trial of mexiletine in myotonic patients 5. This crossover 
study compared mexiletine to placebo in 59 adult patients carrying 
sodium or chloride channel mutations. The primary end-point was 
a patient reported severity score of stiffness, which was improved 
during four-week mexiletine treatment. Improvement was also re-
ported for needle electromyography and clinical myotonia (handgrip 
and eyelid). This successful trial supported the designation of mexile-
tine as orphan drug in myotonia by the European Medicines Agency 
in 2013, followed by marketing authorization in 2018. Effectiveness 
of mexiletine was further confirmed in an aggregated N-of-1 trial and 
an additional crossover study, involving a total of 55 adult patients 6-7. 

Importantly, an open-label interventional study has been completed 
in pediatric myotonic patients (6 to < 18 years of age) to describe the 
pharmacokinetics, safety, and efficacy of mexiletine (NCT04624750, 
clinicaltrials.gov), and results are expected soon. Two observational 
prospective studies are still undergoing to verify the long-term ef-
fectiveness and safety of mexiletine in adult and pediatric NDM pa-
tients (NCT04622553; NCT04616807). In two retrospective studies 
of large cohorts, mexiletine appeared relatively safe and efficient in 
the long term, up to 20 years 8-9. The most common side effects were 
gastrointestinal disorders, which may require specific treatment or 
may lead to mexiletine interruption by a few patients. In addition, 
expert recommendations have been recently published regarding the 
cardiac assessment of NMD adult patients treated with mexiletine 10. 
A recent French survey recruiting 47 adults NDM patients reported 
that most patients were taken mexiletine and obtained, at least occa-
sionally, a significant improvement in muscle stiffness and reduction 
in falls, muscle pain, and anxiety 11. Yet, it is widely acknowledged 
that mexiletine may allow little benefits in a number of myotonic pa-
tients due to contraindications (mainly cardiac myopathy), side ef-
fects (mainly gastrointestinal), unsatisfactory therapeutic response, 
high costs and/or limited availability in some countries.

Alternative drugs to mexiletine
Besides mexiletine, other sodium channel blockers are prescribed 
off-label to myotonic patients. Historically, a common alternative was 
carbamazepine or phenytoin because of consolidated use by neurol-

Figure 1. Pharmacological treatments available for NDM or in preclinical studies, with their mechanism of action. Dashed arrows indicate hypothetical 
mechanisms of action. RCT: Randomized Controlled Trial.
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ogists in epilepsy, especially in the pediatric setting 12. The cardiac 
antiarrhythmic flecainide proved beneficial in some SCM or PMC 
patients, who were unsatisfied with mexiletine 13-17. One possible ex-
planation may be the reduced sensitivity of specific sodium channel 
mutants to mexiletine 18. The anti-anginal ranolazine showed benefits 
in two open-label trials in MC and PMC patients 19-20. Other sodi-
um channel blockers used occasionally include procainamide and 
propafenone. However, randomized controlled trials (RCT) to confirm 
effectiveness of these drugs are lacking.
One exception is the anticonvulsant lamotrigine, which effectiveness in 
adult NDM patients was demonstrated in a double-blind randomized, 
placebo-controlled, crossover study 21. Of the 26 enrolled patients (12 
with PMC and 14 with MC), 18 showed myotonia improvement with 
lamotrigine, 4 reported no effect of treatment, and 4 dropped out (one 
for treatment related allergy). According to the authors, lamotrigine 
could be considered first-line therapy because of effectiveness, lim-
ited side effects, lower price, and availability, as well as second line in 
mexiletine-intolerant patients. A recent head-to-head, crossover study 
in NDM patients confirmed effectiveness of both mexiletine and lam-
otrigine but failed to demonstrate the non-inferiority of lamotrigine to 
mexiletine 22. Nevertheless, half of the participants who took mexiletine 
before the study changed to lamotrigine after the study, due to reduced 
side effects, increased efficacy, or better access. In addition, the au-
thors highlighted the huge cost disparity between the two drugs in the 
UK. Thus, they proposed a personalized treatment algorithm based on 
symptoms, co-morbidities, patient’s preferences, and economical con-
siderations. Another head-to-head trial of lamotrigine versus mexiletine 
has been announced (NCT05639257).
Interestingly, cannabinoids were recently shown to improve myotonia 
in a small cohort of myotonic patients 23, an effect likely related to 
inhibition of Nav1.4 channel by cannabidiol 24-25. Also the tricyclic 
antidepressant amitriptyline and the opioid analgesic buprenorphine, 
which both exert Nav1.4 channel inhibition, were reported effective 
in a few patients 26-27. 
Besides sodium channel blockers, the carbonic anhydrase acetazol-
amide has been used off-label for treating myotonia but no RCT has 
been performed 28-29. The mechanism of action of acetazolamide 
in myotonia may include kaliuresis allowing dampening of skeletal 
muscle excitability. Direct activation of skeletal muscle Ca2+-activat-
ed potassium channels by acetazolamide has been also reported 
but recent studies suggest that this might be counterproductive in 
myotonia 30-32. Acetazolamide-induced acidosis may also modulate 
various metabolic pathways in muscle fibers. For instance, the drug 
was shown to increase ClC-1 channel activity through intracellular 
acidosis, thereby reducing muscle fiber excitability in vitro 33.

Experimental pharmacology

The pharmacological study of ion channels using the patch-clamp 
technique offers a good opportunity for testing new anti-myotonic 
drugs. There is the possibility to express recombinant human skel-
etal muscle sodium or chloride channels in mammalian cell lines, 
as well as their myotonic mutants. The more promising drugs can 
be then tested in animal models of myotonia congenita, such as the 
adr mouse carrying a recessive CLCN1 mutation or the myotonic 

rat, in which myotonia is induced by pharmacological inhibition of 
chloride channels 34-36. Two mouse model of sodium-channel related 
myotonia are available but have not been used for pharmacological 
studies 37-38.
Regarding Nav1.4 channels, a rather good correlation was found be-
tween in vitro inhibition of sodium channels and in vivo antimyotonic 
effects in animal MC models 39. For instance, a new derivative of to-
cainide, which was 120-fold more potent in blocking Nav1.4 channels 
in vitro, was 100-fold more potent in inhibiting myotonia in the myo-
tonic rat 40. Thus, an in vitro and in vivo screening of clinically-used so-
dium channel blockers disclosed riluzole and safinamide as promising 
antimyotonic drugs, but clinical evidences are still lacking 39,41-43. Nev-
ertheless, translation of preclinical results to humans already proved 
successful for ranolazine, lamotrigine, and flecainide 14,44-46. 
There is currently no selective drug able to increase ClC-1 channel 
activity. Many myotonic mutations reduce the sarcolemma chloride 
conductance by altering the voltage-dependence of ClC-1 channels, 
rendering the channel less prone to opening at physiological voltage 
47-48. In such a case, a “gating corrector” able to restore the normal 
voltage dependence in ClC-1 channels might be useful. Interesting-
ly, such mechanism might be acted indirectly by acetazolamide 33. 
Another common defect induced by ClC-1 mutations is the reduced 
expression of the channel in the sarcolemma due to altered pro-
teostasis (biogenesis in the ER, trafficking to the sarcolemma, and 
protein turn-over at the membrane) 49. A drug of choice for these 
mutations should act as a pharmacological chaperone, favoring 
channel trafficking to and stabilization at the membrane. Recently, 
the non-steroidal anti-inflammatory drug niflumic acid was shown 
to exert such an effect on heterologously expressed ClC-1 channel 
mutants 50. Whether this may occur in skeletal muscle in vitro and in 
vivo remains to be demonstrated. 
In vitro studies on isolated myotonic muscles suggested that activa-
tion of voltage-gated potassium (Kv) channels by retigabine may en-
hance the warm-up phenomena, reducing the duration of myotonia 
51-53. Antimyotonic effect of retigabine was also observed in vivo in 
the adr mouse but motor performance was not improved, maybe due 
to extra-muscle effects 52. Yet, these studies suggest that Kv channel 
openers might broaden the therapeutic arsenal for treating NDM.

Conclusions

The non-dystophic myotonias represent a paradigm for drug repur-
posing in rare diseases 4. Today, mexiletine is the sole drug with ther-
apeutic indication for NDM but there is a good consensus for the use 
of other sodium channel blockers at least in patients unsatisfied with 
mexiletine, including lamotrigine, carbamazepine, and flecainide. 
The first two ones present the advantage to have pediatric indica-
tion and consolidated use by neurologists in epilepsy, while flecainide 
showed significant improvement in patients carrying sodium channel 
mutations “resistant” to mexiletine. A challenge for pharmacological 
studies in humans will be to demonstrate the non-inferiority of these 
drugs to mexiletine.
Besides clinical studies, preclinical research is still required to 1) 
identify new sodium channel blockers with antimyotonic potential, 
2) better understand the mechanisms of action of acetazolamide in 
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NDM, 3) identify ClC-1 chloride channel activators, and 4) evaluate 
the antimyotonic potential of Kv channel activators. 
By increasing the arsenal of antimyotonic drugs, the hope is to design 
a precision therapy to address personalized treatment of myotonic 
individuals 3. 
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